Аннотация:
Исследуются аппроксимативные свойства частичных сумм сопряженного ряда Фурье по одной системе алгебраических дробей Чебышева – Маркова. Приведены основные результаты ранее известных работ о приближениях сопряженных функций в полиномиальном и рациональном случаях. Вводится в рассмотрение одна система алгебраических дробей Чебышева – Маркова и проводится построение сопряженного рационального ряда Фурье – Чебышева, соответствующего ей. Найдено интегральное представление приближений сопряженной функции частичными суммами построенного сопряженного ряда. Исследуются приближения функции, сопряженной к $|x|^s, 1 < s < 2,$ на отрезке $[-1,1]$ частичными суммами сопряженного рационального ряда Фурье – Чебышева. Найдены интегральное представление приближений, оценки приближений изучаемым методом в зависимости от положения точки $x$ на отрезке, и их асимптотические выражения при $n \to \infty$. Установлено оптимальное значение параметра, при котором уклонения частичных сумм сопряженного рационального ряда Фурье – Чебышева от функции, сопряженной к $|x|^s, 1 < s < 2,$ на отрезке $[-1,1]$ имеют наиболее высокую скорость стремления к нулю. Как следствие полученных результатов подробно исследована задача о приближениях функции, сопряженной к $|x|^s, s > 1,$ частичными суммами сопряженного ряда Фурье по системе многочленов Чебышева первого рода.