RUS  ENG
Полная версия
ЖУРНАЛЫ // Известия высших учебных заведений. Математика // Архив

Изв. вузов. Матем., 2021, номер 3, страницы 3–14 (Mi ivm9653)

Эта публикация цитируется в 3 статьях

Непрерывное продолжение функций с отрезка до функций в ${\mathbb R}^n$ с нулевыми шаровыми средними

В. В. Волчков, Вит. В. Волчков

Донецкий национальный университет, ул. Университетская, д. 24, г. Донецк, 283001, Украина

Аннотация: Пусть $\mathbb{R}^n$ — евклидово пространство размерности $n\geq 2$. Для области $G\subset \mathbb{R}^n$ через $V_r(G)$ обозначим множество функций $f\in L_{\mathrm{loc}}(G)$, имеющих нулевые интегралы по всем замкнутым шарам радиуса $r$, содержащимся в $G$ (если область $G$ не содержит таких шаров, то полагаем $V_r(G)=L_{\mathrm{loc}}(G)$). Пусть $E$ — непустое подмножество $\mathbb{R}^n$. В работе исследуются следующие вопросы, связанные с проблемой продолжения.
1) При каких условиях заданная на $E$ непрерывная функция может быть продолжена на все пространство $\mathbb{R}^n$ до непрерывной функции класса $V_r(\mathbb{R}^n)$?
2) Если указанное выше продолжение функции существует, то необходимо получить оценки роста продолженной функции на бесконечности.
В теореме 1 данной работы показано, что для широкого класса непрерывных на отрезке $E$ функций, определяемого в терминах модуля непрерывности, возможно продолжение до ограниченной функции класса $(V_r\cap C)(\mathbb{R}^n)$ независимо от длины отрезка $E$. Подобный результат неверен для открытых множеств $E$ с диаметром, большим $2r$, даже без условий на рост продолжения. В теореме 1 содержится также оценка скорости убывания продолженной функции на бесконечности в направлениях, ортогональных к отрезку $E$.
Как показывает теорема 2, в случае пространства с нечетной размерностью $n$ утверждение теоремы 1 выполнено для любой непрерывной на $E$ функции с другой оценкой роста. Метод доказательства теорем 1, 2 позволяет получить аналогичные результаты и для функций с нулевыми интегралами по всем сферам фиксированного радиуса (при этом аналог теоремы 2 выполняется для пространств с четной размерностью).

Ключевые слова: сферические и шаровые средние, проблема продолжения, тригонометрический ряд.

УДК: 517.444

Поступила: 21.04.2020
Исправленный вариант: 04.06.2020
Принята к публикации: 29.06.2020

DOI: 10.26907/0021-3446-2021-3-3-14


 Англоязычная версия: Russian Mathematics (Izvestiya VUZ. Matematika), 2021, 65:3, 1–11

Реферативные базы данных:


© МИАН, 2024