RUS  ENG
Полная версия
ЖУРНАЛЫ // Известия высших учебных заведений. Математика // Архив

Изв. вузов. Матем., 2022, номер 1, страницы 25–37 (Mi ivm9741)

Эта публикация цитируется в 1 статье

Нестационарные связанные механодиффузионные процессы в ортотропном сплошном цилиндре с учетом релаксации диффузионных потоков

Н. А. Зверевa, А. В. Земсковab, Д. В. Тарлаковскийab

a Московский авиационный институт (национальный исследовательский университет), Волоколамское ш., д. 4, г. Москва, 125993, Россия
b НИИ механики МГУ им. М.В. Ломоносова, Мичуринский пр., д. 1, г. Москва, 119192, Россия

Аннотация: Рассматривается задача об определении напряженно-деформированного состояния ортотропного сплошного многокомпонентного цилиндра, на поверхности которого заданы нестационарные внешние упругодиффузионные возмущения. В качестве математической модели используется связанная система уравнений упругой диффузии в цилиндрической системе координат. В работе учтены релаксационные диффузионные эффекты, подразумевающие конечные скорости распространения диффузионных потоков.
Решение задачи ищется в интегральной форме в виде сверток функций Грина c функциями, задающими поверхностные упругодиффузионные возмущения. Для нахождения функций влияния применяются интегральное преобразование Лапласа по времени и разложение в ряды Фурье по специальным функциям Бесселя. Обращение преобразования Лапласа осуществляется аналитически с помощью теории вычетов и стандартных таблиц операционного исчисления. Получено аналитическое решение задачи.
На примере трехкомпонентного материала выполнено численное исследование взаимодействия механического и диффузионного полей в сплошном ортотропном цилиндре, находящемся под действием равномерно распределенного по поверхности давления.

Ключевые слова: упругая диффузия, преобразование Лапласа, ряд Фурье, функция Грина, полярно-симметричная задача, нестационарная задача, функция Бесселя.

УДК: 539.3: 539.8

Поступила: 04.03.2021
Исправленный вариант: 04.03.2021
Принята к публикации: 30.03.2021

DOI: 10.26907/0021-3446-2022-1-25-37


 Англоязычная версия: Russian Mathematics (Izvestiya VUZ. Matematika), 2022, 66:1, 19–30

Реферативные базы данных:


© МИАН, 2024