Аннотация:Тема. Работа посвящена изучению математической модели, описывающей оптическую систему с двумерной обратной связью. Примером такой оптической системы может быть нелинейный интерферометр с зеркальным отражением поля. Математической моделью выступает нелинейное функционально-дифференциальное параболическое уравнение с преобразованием отражения пространственной переменной и условиями на круге. Цель работы состоит в исследовании условий возникновения пространственно неоднородных стационарных решений. Предполагается дать ответ на вопрос об асимптотической форме рождающихся решений и определении их устойчивости. Методы. Исследование проводится методами теоретического анализа, а именно используются метод центральных многообразий, метод Фурье и метод сведения к интегральному уравнению. Используя метод разделения переменных, доказана лемма о собственных значениях и собственных функциях соответствующей линеаризованной задачи. Для определения асимптотической формы решения для линеаризованной и соответствующей нелинейной параболической задачи применялся метод сведения к интегральному уравнению. Приведены необходимые выкладки по доказательству единственности и непрерывной зависимости решения от начальных условий. Результаты и обсуждение. На основе метода центральных многообразий доказана теорема о существовании и устойчивости пространственно неоднородного стационарного решения. Получено представление для неоднородной структуры, рождающейся в результате бифуркации типа «вилка» при переходе бифуркационного параметра через критическое значение. Согласно с доказанной теоремой это решение рождается асимптотически устойчивым. Эта теорема носит локальный характер и работает в окрестности бифуркационного значения коэффициента диффузии. Результаты, приведенные в данной работе, являются продолжением исследований в области нелинейной оптики. Возможность анализа рождающихся структур не только в окрестности бифуркационного значения параметра, но и на всем промежутке изменения выбранного параметра, остается актуальной. Представленные в работе результаты могут быть применены как в теоретическом анализе задач нелинейной оптики, так и в практической обработке и интерпретации информации, полученной при постановке вычислительных или физических экспериментов.