Аннотация:
Рассматривается электронный генератор на основе двух колебательных контуров, один из которых включает отрицательную проводимость (активный контур), где реализуется сложная динамика и хаос, соответствующие модели волновой турбулентности Вышкинд–Рабиновича. Эффект насыщения автоколебаний и их хаотизация обусловлены параметрическим механизмом благодаря присутствию квадратичного нелинейного реактивного элемента на основе операционного усилителя и аналогового умножителя. Исследование основано на сочетании схемотехнического моделирования с использованием программного продукта Multisim и численного решения уравнений, непосредственно описывающих осцилляции напряжений и токов в колебательных контурах, амплитудных уравнений и уравнений в форме, предложенной С.Я. Вышкинд и М.И. Рабиновичем. Для указанных моделей построены временные зависимости динамических переменных от времени, портреты аттракторов, зависимости показателей Ляпунова от параметров. Для модели Вышкинд–Рабиновича построена также карта динамических режимов на плоскости параметров. Показано что все модели демонстрируют переход к хаосу через последовательность бифуркаций удвоения периода при уменьшении параметра надкритичности в активном колебательном контуре. Возникающий хаотический аттрактор по своей структуре аналогичен аттрактору Ресслера. Предложенная схема является новой и позволяет наблюдать в радиотехническом устройстве хаотическую динамику резонансного триплета при неустойчивости высокочастотной моды, рассмотренную в свое время Вышкинд и Рабиновичем и интерпретируемую как модель определенного типа волновой турбулентности в диссипативных средах. Представленные результаты свидетельствуют о возможности использования предлагаемой электронной схемы для аналогового моделирования колебательно-волновых явлений в системах, к которым применима модель Вышкинд–Рабиновича.