Аннотация:
Если при задании оператора эволюции динамических систем допустить использование негладких или разрывных функций, то ситуации квазигиперболической хаотической динамики реализуются достаточно просто. Это имеет место, например, на аттракторах в модельном отображении Лози и в отображении Белых. В настоящей статье рассматривается квазигиперболический аттрактор Белых в отображении, описывающем динамику ротатора с диссипацией в присутствии периодических толчков, у которых интенсивность зависит по пилообразному закону от мгновенной угловой координаты ротатора, а также исследуется трансформация аттрактора при сглаживании пилообразной функции. Представлены преобразования, сводящие задачу к отображению Белых стандартной формы. Приводятся результаты численных расчетов, иллюстрирующих динамику системы с непрерывным временем на аттракторе Белых. Представлены и обсуждаются также результаты для модели со сглаженной пилообразной функцией в зависимости от параметра, характеризующего масштаб сглаживания. На графиках зависимости показателей Ляпунова при сглаживании пилообразной функции можно видеть появление окон периодической динамики, что говорит о нарушении квазигиперболической природы аттрактора. Приведены также карты динамических режимов на плоскости параметров системы, где присутствуют области периодических движений («языки Арнольда»), уменьшающиеся по мере уменьшения характерного масштаба сглаживания и исчезающие в предельном случае разрывной пилообразной функции. Поскольку изначально аттрактор Белых введен в контексте радиофизических задач (фазовая автоподстройка частоты), предпринятый здесь анализ представляет интерес с точки зрения возможного использования хаотической динамики на этом аттракторе в электронных устройствах.