RUS  ENG
Полная версия
ЖУРНАЛЫ // Известия высших учебных заведений. Прикладная нелинейная динамика // Архив

Известия вузов. ПНД, 2020, том 28, выпуск 5, страницы 460–464 (Mi ivp387)

Эта публикация цитируется в 1 статье

К упрощенному описанию волн в бесстолкновительной плазме

А. А. Рухадзеa, В. Е. Семеновb

a Институт общей физики им. А.М. Прохорова Российской академии наук, г. Москва
b Институт прикладной физики РАН, г. Нижний Новгород

Аннотация: Цель предлагаемой методической заметки – сопоставить развитые А.А. Власовым и Л.Д. Ландау подходы к распространению электромагнитных волн в горячей разреженной плазме. Более полувека назад А.А. Власов и Л.Д. Ландау, используя метод кинетического уравнения, показали, что – в соответствии с принципом причинности – собственные волны равновесной плазмы должны затухать, даже если бинарное взаимодействие частиц пренебрежимо слабо. Однако долгое время близость пионерских теорий А.А. Власова и Л.Д. Ландау представлялась недостаточно очевидной. Чтобы минимизировать расхождения в подходах к кинетическим эффектам затухания-нарастания волн в бесстолкновительной плазме, данная заметка вместо метода кинетического уравнения предлагает более простой метод – основанный на использовании элементарных уравнений движения электронов. Для однородной плазмы с осесимметричным распределением электронов по невозмущенным скоростям выведен интеграл, пригодный для того, чтобы рассчитать диэлектрическую проницаемость плазмы и, соответственно, получить дисперсионное соотношение для самосогласованной продольной волны. В частности, если скоростное распределение описывается достаточно плавной функцией, то – в соответствии с теорией Л.Д. Ландау – инкремент или декремент волны определяется производной от функции распределения электронов в точке их черенковского синхронизма с волной. В качестве простейшей модели рассмотрено распространение волны в плазме, где исходное распределение электронов по скоростям описывается функцией Лоренца. Декремент волны в этом случае совпадает с декрементом, который был получен в свое время А.А. Власовым, а при черенковском синхронизме на «хвосте» функции распределения этот декремент имеет величину, которая соответствует асимптотике Л.Д. Ландау. Таким образом, проведенный анализ подтвердил взаимное согласие теорий А.А. Власова и Л.Д. Ландау.

Ключевые слова: бесстолкновительная плазма, черенковский синхронизм, теория Ландау, уравнение Власова.

УДК: 533.9.01

Поступила в редакцию: 26.10.2020

DOI: 10.18500/0869-6632-2020-28-5-459-464



Реферативные базы данных:


© МИАН, 2024