Аннотация:Цель настоящего исследования – изучить динамику пучков и электронных сгустков в системе с идеально проводящей плоскостью и однородным магнитным полем при наличии запаздывания электромагнитных волн и при образовании в системе виртуального катода или при параметрах, близких к этому состоянию. Методы. В работе в рамках численного моделирования изучается динамика цилиндрического электронного пучка, влетающего через идеально проводящую плоскость в сильное продольное магнитное поле. Частицы – крупные. Изучение динамики пучков проводится путём решения уравнений движения методом Рунге–Кутты 4-го порядка. Поле пространственного заряда рассчитывается по соотношениям Лиенара–Вихерта с учётом запаздывания. Влияние плоскости учитывается методом зеркальных изображений. Время и место формирования виртуального катода оценивается по одномерной модели, что определяет шаг интегрирования по времени численной схемы. Результаты. Показано, что при формировании виртуального катода в цилиндрическом пучке, частицы, прошедшие область виртуального катода, испытывают ускорение под действием пространственного заряда, сосредоточенного вблизи проводящей границы. Происходит перераспределение энергии электронов пучка между электронами потока – электроны в хвосте потока ускоряются, электроны вблизи плоскости влёта замедляются. Подобные процессы имеют место и при отсутствии виртуального катода при инжекции в полупространство с магнитным полем короткого электронного импульса. Заключение. С ростом плотности пространственного заряда пучка в системе электроны, влетающие в пространство взаимодействия первыми, ускоряются сильнее, последующие электроны сильнее замедляются. При этом также происходит увеличение расстояния, проходимого пучком. Особенно сильное ускорение наблюдается после области виртуального катода.
Ключевые слова:электронный пучок, потенциалы Лиенара–Вихерта, сильноточная электроника, виртуальный катод, приборы О-типа, метод крупных частиц.