Аннотация:Цель работы - исследование пространственно-временной динамики лимитированных популяций с возрастной структурой, заселяющих двумерный ареал и способных на миграцию на большие расстояния. Для этого предложена модель - система нелокально связанных нелинейных двумерных отображений с нелинейной функцией связи. Исследуются условия возникновения разных типов неоднородного пространственного распределения, сочетающие когерентные и некогерентные режимы на разных участках, а также уединенные состояния. Методы. Для диагностики и исследования мультистабильного характера разных режимов пространственно-временной динамики использовался показатель синхронизации и параметр порядка. В дополнение предложен способ оценки числа уединенных состояний. При проведении численных экспериментов генерировалось множество случайных начальных условий и на основе этих показателей оценивалась вероятность формирования того или иного режима. Результаты. Описано три основных режима. Равномерное распределение с полной или частичной синхронизацией, вероятность формирования которого падает по мере снижения силы и (или) радиуса связи. Неоднородное распределение, с узорами в виде пятен, полос или лабиринтов, соответствующее кластерной синхронизации. Распределение с сильно раздробленными пятнами, но в целом с когерентной динамикой. Показано, что при определенных условиях эти режимы синхронизации сосуществуют. Обнаружено, что независимо от наблюдаемого режима в большинстве случаев пространственно-временная динамика содержит случайно расположенные на ареале одиночные элементы с сильными выбросами численностей (уединенные состояния). Заключение. Выявлена парадоксальная ситуация: по мере того как элементы оказываются менее связанными, а их динамика менее согласованной, число уединенных состояний растет. В результате элементы с выбросами все чаще синхронизируются между собой и образуют кластеры, перемешанные с кластерами синхронных популяций с иным типом динамики, либо кластеры на основе уединенных состояний появляются на фоне абсолютно несинхронной динамики.