Аннотация:Тема работы- странные аттракторы многомерных отображений и потоков. Странные аттракторы можно разделить на две группы: настоящие аттракторы, которые сохраняют свою хаотичность при малых возмущениях, и квазиаттракторы (по Афраймовичу-Шильникову), внутри которых при малых возмущениях могут возникать устойчивые периодические траектории. Основная цель настоящей работы - это построение эффективных критериев, позволяющих различать такие аттракторы, а также проверка этих критериев с помощью численных экспериментов. В качестве "настоящих" аттракторов мы рассматриваем так называемые псевдогиперболические аттракторы. В работе дается их определение и описываются характеристические свойства, на основании которых строятся два вида численных методов, позволяющих проверить принципиально важное свойство псевдогиперболических аттракторов: непрерывность полей сильно сжимающих пространств и пространств, где есть растяжение объемов. В качестве примеров, на которых протестированы численные методы проверки псевдогиперболичности, рассматриваются классическое отображение Эно, сингулярно-гиперболическое отображение Лози, аносовский диффеоморфизм двумерного тора, классические системы Лоренца и Шимицу-Мориока, а также трехмерное отображение Эно.