Аннотация:Цель настоящей работы заключалась в исследовании характерной для реакционно-диффузионных систем с глобальной связью неустойчивости однородного состояния, приводящей к формированию двухдоменных пространственно-временных структур. Методы. Линейная стадия неустойчивости проанализирована на основе метода разделения переменных для одномерной двухкомпонентой системы общего вида, заданной на конечном интервале с граничными условиями Неймана. Развитие неустойчивости на нелинейной стадии моделировалось численно с помощью метода прямых для конкретных систем. Результаты. Показано, что введение глобальной связи может приводить к потере устойчивости изначально стабильных однородных состояний. Определены критерии неустойчивости для двухкомпонентных систем общего вида. Выделен случай, когда даже в длинных средах наибольший инкремент имеет пространственная мода с длиной волны, равной удвоенному размеру системы, что может приводить к формированию характерных двухдоменных структур в результате развития неустойчивости на нелинейной стадии. При этом междоменная граница может быть как неподвижной, так и совершать колебания, а соответствующие режимы могут быть проинтерпретированы как волны переключения с нулевой или переменной скоростью. Такая интерпретация позволила аналитически оценить установившиеся размеры доменов в распределённой системе ФитцХью-Нагумо, а также сконструировать простые примеры систем, в которых междоменная граница совершает гармонические колебания с произвольной амплитудой или хаотические колебания, аналогичные движениям системы Рёсслера. Заключение. Исследованная неустойчивость однородного состояния присуща широкому классу систем и отличается от хорошо известных неустойчивостей диффузионного типа (в частности, тьюринговской неустойчивости), в которых пространственный масштаб нарастающих возмущений в пределе длинных сред определяется исключительно локальными свойствами системы, но не её размерами.
Ключевые слова:реакционно-диффузионные системы, неустойчивость однородного состояния, тьюринговская неустойчивость, волновая неустойчивость, глобальная связь, Система ФитцХью-Нагумо, система Рёсслера, волны переключения, уравнение Зельдовича-Франк-Каменецкого.