Аннотация:
Из результатов работы А. Г. Майера 1939 года известно, что грубые преобразования окружности исчерпываются диффеоморфизмами Морса-Смейла. Класс топологической сопряжённости сохраняющего ориентацию диффеоморфизма полностью определяется его числом вращения и числом его периодических орбит, в то время как для меняющего ориентацию диффеоморфизма топологическим инвариантом будет лишь число периодических орбит. Таким образом, цель настоящего исследования - найти топологические инварианты n-кратных декартовых произведений диффеоморфизмов окружности. Методы. В данной работе исследуются грубые диффеоморфизмы Морса-Смейла на поверхности n-тора. Для доказательства основного результата использовались дополнительные построения и конструкция подмножеств рассматриваемых множеств. Результаты. В настоящей работе введён числовой топологический инвариант для n-кратных декартовых произведений грубых преобразований окружности. Заключение. Сформулирован критерий топологической сопряжённости n-кратных декартовых произведений грубых преобразований окружности.