Аннотация:Цель настоящего исследования - построить асимптотику релаксационных режимов системы дифференциальных уравнений с запаздыванием, описывающей три диффузионно связанных генератора с нелинейной финитной запаздывающей обратной связью в предположении, что множитель перед функцией обратной связи является достаточно большим. Также целью является изучение влияния связи между осцилляторами на нелокальную динамику рассматриваемой модели. Методы. Мы строим асимптотику решений рассматриваемой модели с начальными условиями из специального множества. По асимптотике решений получаем оператор сдвига по траекториям, переводящий множество начальных функций в множество того же типа. Главная часть этого оператора описывается конечномерным отображением. Изучение его динамики позволяет уточнить асимптотику решений исходной модели и сделать выводы о ее динамике. Результаты. Из вида построенного отображения следует, что при положительных параметрах связи у исходной модели, начиная с некоторого момента времени, все три генератора имеют одинаковую главную часть асимптотики - генераторы "синхронизируются". При отрицательных значениях параметра связи возможны как неоднородные релаксационные циклы, так и нерегулярные режимы. Описана связь этих режимов с режимами построенного конечномерного отображения. Заключение. Из результатов работы следует, что на динамику рассматриваемой модели принципиальным образом влияет значение параметра связи между генераторами.