RUS  ENG
Полная версия
ЖУРНАЛЫ // Известия высших учебных заведений. Прикладная нелинейная динамика // Архив

Известия вузов. ПНД, 2022, том 30, выпуск 2, страницы 132–151 (Mi ivp468)

Эта публикация цитируется в 2 статьях

БИФУРКАЦИИ В ДИНАМИЧЕСКИХ СИСТЕМАХ. ДЕТЕРМИНИРОВАННЫЙ ХАОС. КВАНТОВЫЙ ХАОС

Динамика решений одного нелинейного функционально-дифференциального уравнения параболического типа

А. А. Корнута, В. А. Лукьяненко

Крымский федеральный университет имени В.И. Вернадского, Симферополь, Россия

Аннотация: Целью работы является исследование начально-краевой задачи для параболического функционально-дифференциального уравнения в кольцевой области, которое описывает динамику фазовой модуляции световой волны, прошедшей тонкий слой нелинейной среды керровского типа в оптической системе с контуром обратной связи, с преобразованием поворота (отвечает оператор инволюции) и условиями Неймана на границе в классе периодических функций. Более подробно исследуются пространственно-неоднородные стационарные решения, бифурцирующие из пространственно-однородного стационарного решения в результате бифуркации типа "вилка" и периодические по времени решения типа "бегущая волна". Методы. Для представления исходного уравнения в виде нелинейных интегральных уравнений используется функция Грина. Применяется метод центральных многообразий для доказательства теоремы о существовании в окрестности бифуркационного параметра решений указанного уравнения и исследования их асимптотической формы. Численное моделирование пространственно-неоднородных решений и бегущих волн проведено с использование метода Галёркина. Результаты. Получены интегральные представления рассматриваемой задачи в зависимости от вида линеаризованного оператора. С использованием метода центральных многообразий доказана теорема о существовании и асимптотической форме решений начально-краевой задачи для функционально-дифференциального уравнения параболического типа с оператором инволюции на кольце. В результате численного моделирования, основанного на галёркинских аппроксимациях, в рассматриваемой задаче построены приближенные пространственно-неоднородные стационарные решения и периодические по времени решения типа бегущей волны. Заключение. Предложенная схема применима не только к инволютивным операторам поворота и условиям Неймана на границе кольца, но и к другим краевым условиям и круговым областям. Представление исходной начально-краевой задачи в виде нелинейных интегральных уравнений второго рода позволяет более просто находить коэффициенты асимптотических разложений, доказывать теоремы существования и единственности, а также использовать различное число коэффициентов разложения нелинейной составляющей в правой части исходного уравнения в окрестности выделенного решения (например, стационарного). Визуализация численного решения подтверждает теоретические выкладки и показывает возможность формирования сложных фазовых структур.

Ключевые слова: оптическая система, нелинейная среда керровского типа, параболическое нелинейное уравнение, оператор инволюции, устойчивость решений.

УДК: 517.957

Поступила в редакцию: 15.10.2020

DOI: 10.18500/0869-6632-2022-30-2-132-151



Реферативные базы данных:


© МИАН, 2024