Аннотация:Цель настоящего обзора - рассмотреть возможность применения теории интегрированной информации к анализу нейронной активности головного мозга. Ранее было показано, что коэффициент интегрированной информации Ф отражает степень динамической сложности системы и способен предсказывать степень успешности её работы, определяемую классическими наблюдаемыми критериями. Исходя из этого, становится актуальным вопрос относительно применения теории интегрированной информации к анализу изменений в спайковой активности головного мозга в процессе приобретения нового опыта. Заключение. Были рассмотрены основы теории интегрированной информации и её возможное применение в нейробиологии для исследования процесса приобретения нового опыта. Показано, что коэффициент интегрированной информации Ф является метрикой, способной оценить динамическую сложность нейронных сетей головного мозга, увеличивающуюся с приобретением опыта. Предложены методы, позволяющие на практике вычислить значение коэффициента Ф для данных нейронной активности.
Ключевые слова:Мозг, информация, обучение, теория интегрированной информации, сложность.