Аннотация:Цель настоящего исследования - построение аналитической модели поведения гармонической волны в нелинейной оптической среде с периодически расположенными нанопленками. Методы. Представлен модернизированный метод негладкого преобразования аргумента для исключения функций Дирака в правой части нелинейного неоднородного дифференциального уравнения, описывающего поведение линейно поляризованной волны в нелинейной среде с периодически расположенными проводящими нанопленками. Для нахождения приближенного аналитического решения также использовались методы малого параметра, в частности метод усреднения. Результаты. Построена полностью аналитическая модель поведения линейно поляризованной гармонической волны в нелинейной оптической среде с периодически расположенными проводящими нанопленками. Заключение. Построена математическая модель распространения линейно поляризованной гармонической волны в нелинейной оптической среде с периодически расположенными проводящими нанопленками, основанная на методе негладкого преобразования аргумента. Модель является полностью аналитической, все выражения получены непосредственно из уравнений Максвелла путем тождественных преобразований. Границы ее применимости определяются границами применения волновой теории света.