Аннотация:Цель исследования - с помощью аналитических и численных методов рассмотреть задачу нелинейной динамики кинков в модели синус-Гордона с тремя "примесями" (или пространственной неоднородностью периодического потенциала). Методы. С помощью метода коллективных переменных для случая трех одинаковых точечных примесей, расположенных на одинаковом расстоянии друг от друга, получена система дифференциальных уравнений, описывающая динамику центра кинка с учетом возбуждения локализованных волн на примесях. Для анализа динамики кинка в случае протяженных примесей был применён численный метод конечных разностей с явной схемой интегрирования. Частотный анализ колебаний кинка и локализованных волн, рассчитанных численно, выполнялся с помощью дискретного преобразования Фурье. Результаты. Для динамики кинка с учетом возбуждения колебательных мод, локализованных на примесях, получена и исследована система уравнений для координаты центра кинка и амплитуд локализованных мод. Значительные различия наблюдаются в динамике кинка при взаимодействии с отталкивающей и притягивающей примесью. Динамика кинка в модели с тремя одинаковыми протяженными примесями, с учетом возможных резонансных эффектов, решалась численно. Установлено, что найденные сценарии динамики кинка для протяженной примеси прямоугольного вида качественно похожи на сценарии, полученные для точечной примеси, описываемой с помощью дельта-функции. Все возможные сценарии динамики кинка определялись и описывались с учетом резонансных эффектов. Заключение. Проведён анализ влияния параметров системы и начальных условий на возможные сценарии динамики кинка. Найдены критические и резонансные скорости кинка как функции от параметров примеси.
Ключевые слова:уравнение синус-Гордона, кинк, солитон, бризер, метод коллективных координат, примесь