RUS  ENG
Полная версия
ЖУРНАЛЫ // Известия высших учебных заведений. Прикладная нелинейная динамика // Архив

Известия вузов. ПНД, 2024, том 32, выпуск 2, страницы 160–179 (Mi ivp582)

ПРИКЛАДНЫЕ ЗАДАЧИ НЕЛИНЕЙНОЙ ТЕОРИИ КОЛЕБАНИЙ И ВОЛН

Механизм обучения коллективного классификатора на основе конкуренции, управляемой обучающими примерами

А. А. Сутягин, О. И. Канаков

Национальный исследовательский Нижегородский государственный университет им. Н. И. Лобачевского, Россия

Аннотация: Цель работы состоит в модификации механизма обучения коллективного классификатора для обеспечения возможности его обучения только за счёт популяционной динамики, без внешнего сортирующего устройства. Коллективный классификатор представляет собой ансамбль неидентичных простых элементов, не имеющих собственной динамики и переменных параметров, обучаемый путём изменения состава ансамбля, что достигалось в предшествующей литературе путём "селекции" элементов ансамбля сортирующим устройством. Методы. Модель популяционной динамики коллективного классификатора дополнена "подсистемой обучения", которая управляется последовательностью обучающих примеров и, в свою очередь, управляет силой внутривидовой конкуренции в популяционной динамике. Динамика подсистемы обучения сводится к линейному отображению со случайными параметрами, выражаемыми через обучающие примеры. Решение отображения представляет собой марковский случайный процесс, стремящийся к стационарному, для которого аналитически найдено математическое ожидание, а дисперсия в рассматриваемом пределе стремится к нулю, что позволяет приближённо описывать связанную популяционную динамику как детерминированную, используя результаты из предшествующей литературы. Результаты. Аналитически показано и проиллюстрировано численным моделированием, что решающее правило, порождаемое классификатором, сходится в процессе обучения к правилу Байеса в рамках допущений, не отличающихся принципиально от принятых в имеющейся литературе по коллективным классификаторам; реализация требуемой конкурентной динамики не подразумевает использования внешнего сортирующего устройства. Заключение. Предложена концептуальная модель коллективного классификатора, обучение которого полностью обеспечивается собственной популяционной динамикой. Как и в предшествующей литературе, предполагается возможность реализации такого классификатора в виде ансамбля живых клеток с синтетическими генными структурами, если будет создан механизм популяционной динамики с внутривидовой конкуренцией, управляемой через синтетическую генную сеть.

Ключевые слова: конкуренция, машинное обучение, классификатор, модель Лотки-Вольтерры

УДК: 530.182

Поступила в редакцию: 21.10.2023

DOI: 10.18500/0869-6632-003089



© МИАН, 2024