Математика
Свойства сферического образа пространственной полосы в $E^4$
В. Г. Шармин,
Д. В. Шармин Тюменский государственный университет, Тюмень
Аннотация:
Актуальность и цели. Исследование свойств поверхностей в различных пространствах - одна из основных задач дифференциальной геометрии. Для поверхностей в евклидовом пространстве, имеющих коразмерность, большую единицы, возникают новые геометрические характеристики и свойства, которых не имеют гиперповерхности в этом пространстве. В частности, у двумерных поверхностей в четырехмерном евклидовом пространстве появляются коэффициенты кручения. Целью данной работы является изучение свойств сферического образа двумерной поверхности, оснащенной системой нормалей без кручения, в четырехмерном евклидовом пространстве.
Материалы и методы. Используются методы дифференциальной геометрии, разработанные Э. Картаном, К. Ш. Рамазановой и А. И. Фирсовым для исследования поверхностей, имеющих коразмерность больше единицы.
Результаты. Доказаны некоторые свойства сферического образа двумерной поверхности, оснащенной системой нормалей без кручения, а также получены достаточные условия того, что он является трехмерной поверхностью.
Выводы. Исследовано строение сферического образа двумерной поверхности, оснащенной системой нормалей без кручения при выполнении некоторых дополнительных условий.
Ключевые слова:
евклидово пространство, двумерная поверхность, сферическое отображение, гауссова кривизна, коэффициенты кручения поверхности.
УДК:
514.752
DOI:
10.21685/2072-3040-2018-1-3