RUS  ENG
Полная версия
ЖУРНАЛЫ // Известия высших учебных заведений. Поволжский регион. Физико-математические науки // Архив

Известия высших учебных заведений. Поволжский регион. Физико-математические науки, 2016, выпуск 2, страницы 54–66 (Mi ivpnz244)

Эта публикация цитируется в 1 статье

Математика

Решение задачи дифракции акустической волны на системе жестких экранов методом Галеркина

Н. В. Романова, А. А. Цупак

Пензенский государственный университет, Пенза

Аннотация: Актуальность и цели. Цель работы - численное исследование скалярной задачи рассеяния плоской акустической волны препятствием сложной формы, состоящим из системы бесконечно тонких акустически жестких экранов. Материалы и методы. Задача рассматривается в квазиклассической постановке; исходная краевая задача для уравнения Гельмгольца в неограниченном пространстве сводится к системе интегральных уравнений по ограниченным многообразиям размерности 2. Для нахождения численного решения задачи применяется метод Галеркина с использованием финитных кусочно-линейных базисных функций. Результаты. Разработан и программно реализован численный метод решения системы интегральных уравнений скалярной задачи дифракции, проведен ряд вычислительных экспериментов. Выводы. Предложенный численный метод является эффективным способом приближенного решения задач дифракции на экранах сложной формы; он может применяться и для решения более широкого круга задач.

Ключевые слова: скалярная задача дифракции, интегральные уравнения, жесткие экраны, метод Галеркина.

УДК: 517.3

DOI: 10.21685/2072-3040-2016-2-5



© МИАН, 2024