Аннотация:Актуальность и цели. Математическое моделирование процесса дифракции электромагнитных волн на плоских экранах и неоднородных анизотропных телах различных форм является важным аспектом в современной электродинамике. Целью данной работы является доказательство сходимости метода Галеркина для решения задачи дифракции электромагнитных волн на системе произвольно расположенных тел и экранов. Материалы и методы. Рассматривается постановка задачи дифракции электромагнитной волны на системе тел и экранов сложных форм. Поставленная задача дифракции представлена в виде системы интегродифференциальных уравнений, для исследования которой применяются элементы теории псевдодифференциальных операторов. Результаты. Сформулирована постановка задачи дифракции; краевая задача сведена к системе интегродифференциальных уравнений. Для решения полученной системы предложен численный метод Галеркина с выбором финитных базисных функций. Доказана сходимость метода Галеркина. Выводы. Получен результат о сходимости численного метода Галеркина для системы, состоящей из плоского экрана и неоднородного анизотропного тела, важный для дальнейшего теоретического и численного исследования поставленной задачи.
Ключевые слова:задача дифракции, система интегродифференциальных уравнений, метод Галеркина, базисные функции, эллиптический оператор.