RUS  ENG
Полная версия
ЖУРНАЛЫ // Известия высших учебных заведений. Поволжский регион. Физико-математические науки // Архив

Известия высших учебных заведений. Поволжский регион. Физико-математические науки, 2015, выпуск 4, страницы 3–11 (Mi ivpnz262)

Эта публикация цитируется в 2 статьях

Математика

О фредгольмовости интегродифференциального оператора в задаче дифракции электромагнитной волны на объемном теле, частично экранированном системой плоских экранов

А. А. Цупак

Пензенский государственный университет, Пенза

Аннотация: Актуальность и цели. Цель работы - теоретическое исследование векторной задачи рассеяния электромагнитной волны на частично экранированном объемном теле. Материалы и методы. Задача рассматривается в квазиклассической постановке; краевая задача сводится к системе интегродифференциальных уравнений, для исследования которой применяются элементы теории псевдодифференциальных операторов на многообразиях с краем. Результаты. Сформулирована квазиклассическая постановка задачи дифракции; краевая задача сведена к системе интегродифференциальных уравнений; оператор системы уравнений рассмотрен как псевдодифференциальный оператор (ПДО) в пространствах Соболева на многообразиях с краем; исследована квадратичная форма матричного ПДО, установлена ее коэрцитивность; доказана фредгольмовость ПДО. Выводы. Получен результат о фредгольмовости матричного интегродифференциального оператора рассматриваемой задачи дифракции, важный для дальнейшего теоретического исследования задачи дифракции и для обоснования проекционных методов ее приближенного решения.

Ключевые слова: векторная задача дифракции, интегродифференциальные уравнения, пространства Соболева, псевдодифференциальные операторы, квадратичная форма, коэрцитивность.

УДК: 517.968, 517.983.37, 517.958:535.4



© МИАН, 2024