Аннотация:Актуальность и цели. Проблема решения задачи Коши для жестких систем большой размерности возникает при моделировании физических и химических процессов, при аппроксимации уравнений в частных производных системой обыкновенных дифференциальных уравнений и во многих других важных приложениях. Учет большого числа факторов при построении математических моделей приводит к расширению класса задач, описываемых жесткими системами большой размерности. Сложность практических задач приводит к возрастающим требованиям к вычислительным алгоритмам. Материалы и методы. В случае большой размерности жесткой системы дифференциальных уравнений основные затраты приходятся на декомпозицию матрицы Якоби. В некоторых алгоритмах применяется замораживание матрицы Якоби, т.е. одна матрица используется на нескольких шагах интегрирования. Проблема замораживания матрицы достаточно просто решается в методах, в которых стадии вычисляются с применением итерационного процесса. Для безытерационных численных формул это существенная проблема. В данной работе сокращение затрат достигается за счет комбинирования явных и L-устойчивых методов по критерию устойчивости в процессе расчетов. Результаты. Создан алгоритм интегрирования переменной структуры на основе явной схемы типа Рунге - Кутты и L-устойчивого метода типа Розенброка третьего порядка. На каждом шаге эффективная численная формула выбирается по критерию устойчивости. Оценка максимального собственного числа матрицы Якоби, необходимая для переключения между методами, для явных численных схем определяется степенным методом через ранее вычисленные стадии, а для метода типа Розенброка - через норму матрицы Якоби. Построены неравенства для контроля точности и устойчивости. Приведены результаты расчетов. Выводы. Алгоритм интегрирования предназначен для решения жестких задач большой размерности. Результаты. расчетов подтверждают эффективность построенного алгоритма.
Ключевые слова:жесткая система, схемы типа Рунге - Кутты и Розенброка, контроль точности и устойчивости, автоматический выбор метода.