Аннотация:Актуальность и цели. Граничные интегральные уравнения Мюллера широко используются для теоретического и численного анализа самых разных спектральных задач математической теории дифракции. Они применялись и для вычисления поверхностных собственных волн однородных слабонаправляющих диэлектрических волноводов без потерь. Цель настоящей работы - разработать методику их применения для поиска не только поверхностных, но и вытекающих волн таких волноводов, а также исследовать с их помощью качественные свойства спектра. Материалы и методы. Исследование качественных свойств спектра проведено методами теории регуляризации задач о собственных волнах открытых волноводов. Сведение исходной задачи к спектральной задаче для системы интегральных уравнений проведено методами теории потенциала. Дальнейший анализ основан на известных результатах об изолированности характеристических значений фредгольмовой голоморфной оператор-функции при наличии в области ее голоморфности хотя бы одной регулярной точки, и о поведении характеристических значений такой оператор-функции, как функций неспектральных параметров. Результаты. Доказано, что исходная задача для уравнения Гельмгольца на плоскости эквивалентна нелинейной спектральной задаче для граничных интегральных уравнений Мюллера с вполне непрерывным оператором. Доказано, что характеристическое множество построенной операторзначной функции может состоять лишь из изолированных точек на соответствующей поверхности Римана. Каждое характеристическое значение непрерывно зависит от неспектральных параметров и может появляться и исчезать лишь на границе этой поверхности. Выводы. Разработанная методика применения граничных интегральных уравнений Мюллера может успешно применяться для решения спектральных задач теории диэлектрических волноводов, а именно для поиска поверхностных вытекающих собственных волн, а также для исследования качественных свойства спектра.
Ключевые слова:распространение электромагнитных волн в волноводе, задача на собственные значения, интегральные уравнения.