Аннотация:Актуальность и цели. Теоретическое исследование векторной задачи рассеяния электромагнитной волны препятствием сложной формы, состоящим из нескольких объемных тел и бесконечно тонких абсолютно проводящих экранов. Материалы и методы. Задача рассматривается в квазиклассической постановке (решение разыскивается в классическом смысле всюду, за исключением края экранов); для доказательства теоремы единственности решения краевой задачи применяются классические интегральные формулы анализа, распространимые на пространства функций Соболева; для доказательства существования и гладкости решения задачи применяются элементы теории эллиптических псевдодифференциальных операторов на многообразиях с краем. Результаты. Сформулирована квазиклассическая постановка задачи дифракции; доказана теорема о единственности квазиклассического решения скалярной задачи дифракции; доказана теорема о фредгольмовости системы интегродифференциальных уравнений; установлена гладкость решения этой системы. Выводы. Полученные результаты могут быть использованы для исследования более сложных задач электродинамики, а также для теоретического обоснования численных методов их решения.