Аннотация:Актуальность и цели. Решение задач математической физики на искусственных нейронный сетях является активно развивающимся направлением, объединяющим методы вычислительной математики и информатики. Применение нейронных сетей особенно эффективно при решении обратных и некорректных задач и уравнений с неточно заданными параметрами. В настоящее время основным методом решения задач математической физики на искусственных нейронных сетях является минимизация функционала погрешности. Целью данной работы является построение устойчивого и быстродействующего метода решения уравнений математической физики на искусственных нейронный сетях, основанного на теории устойчивости решений дифференциальных уравнений. Материалы и методы. В работе предлагается приближенный метод решения эллиптических уравнений на нейронных сетях Хопфилда. Метод заключается в аппроксимации исходной краевой задачи разностной схемой и построении системы обыкновенных дифференциальных уравнений, решение которой сходится к точному решению разностной схемы. Результаты. Предложен метод решения краевых задач для линейных и нелинейных эллиптических уравнений, основанный на методах теории устойчивости. Эффективность метода проиллюстрирована модельными примерами. Выводы.Результаты. работы могут быть использованы при решении широкого класса краевых задач для линейных и нелинейных эллиптических уравнений, определенных в кусочно-гладких областях.
Ключевые слова:нейронная сеть Хопфилда, краевые задачи для эллиптических уравнений, устойчивые методы решения.