Аннотация:Актуальность и цели. Численные методы решения дифференциальных уравнений - актуальная проблема прикладной математики. Работа посвящена численно-аналитическим методам второго и третьего порядка точности, основанным на аппроксимации нелинейных дифференциальных уравнений кусочно-линейными. Материалы и методы. Метод интегральных преобразований для решения уравнений математической физики дополнен методом разложения сигнала в ряд по формуле Котельникова. Методы аналитического продолжения и интегрального преобразования Гильберта послужили основой для описания аналитических сигналов. Результаты. Предлагается новый аналитический метод решения задач математической физики, представляющий синтез метода интегрального преобразования Фурье и разложения в ряд Котельникова. Предложен алгоритм: найти образ Фурье начально-краевых данных, найденный образ разложить в ряд Фурье, вернуться к оригиналу. Предложенный алгоритм реализуется в предположении ограниченности носителя образа Фурье. Таким образом, получаем дискретные аналоги интегральных формул Пуассона для решения задачи Коши и задачи Дирихле. Получен дискретный аналог формул Коши и Шварца для функции аналитической в полуплоскости. Выводы. Предложенные методы могут быть полезны при создании новых численных методов решения задач Коши и Дирихле.
Ключевые слова:формула Котельникова, преобразование Фурье, задача Коши, задача Дирихле, преобразование Гильберта, аналитический сигнал.