Аннотация:
Работа посвящена анализу устойчивости в смысле Ляпунова решений систем линейных дифференциальных уравнений в частных производных гиперболического типа с коэффициентами, зависящими от времени. Исследование устойчивости основано на применении преобразования Фурье по пространственным переменным для перехода от исходной задачи к параметрической системе обыкновенных дифференциальных уравнений в спектральной области и на последующем анализе устойчивости решения этой системы при использовании преобразований Ляпунова и логарифмических норм. Предложен алгоритм, позволяющий получать достаточные критерии устойчивости решений конечных систем линейных дифференциальных уравнений гиперболического типа с коэффициентами, зависящими от времени, а также даны примеры применения этого алгоритма к исследованию устойчивости решений гиперболического уравнения и системы гиперболических уравнений с постоянными коэффициентами. Предложенный метод может быть использован при исследовании динамических систем, описываемых системами гиперболических уравнений.