RUS  ENG
Полная версия
ЖУРНАЛЫ // Известия высших учебных заведений. Поволжский регион. Физико-математические науки // Архив

Известия высших учебных заведений. Поволжский регион. Физико-математические науки, 2013, выпуск 2, страницы 75–86 (Mi ivpnz413)

Эта публикация цитируется в 1 статье

Математика

К теории линейных динамических неантагонистических игр

В. Л. Пасиков

Орский филиал Оренбургского государственного института менеджмента, Орск

Аннотация: В предлагаемой работе изучены задачи из теории динамических игр нескольких лиц с ненулевой суммой, когда ценой игры является система функционалов типа расстояния. Особенность работы заключается в том, что для описания эволюции объектов выделены три случая линейных систем типа Вольтерра: интегродифференциальная система уравнений с управляющими воздействия вне интеграла, интегродифференциальная система уравнений с управляющими воздействиями под знаком интервала и система интегральных уравнений. Решение задачи заключается в построении равновесного, по Нэшу, набора оптимальных стратегий для указанных типов динамических систем и выбранного функционала. Задача решается построением некоторой модификации известной экстремальной конструкции академика Н. Н. Красовского, которая заключается в новом определении позиции игры, для чего используется полная память по управляющим воздействиям, что существенно усложняет все исследование. Доказаны соответствующие теоремы.

Ключевые слова: интегродифференциальное уравнение Вольтерра, интегральное уравнение Вольтерра, управляющее воздействие, измеримая функция, траектория, позиция, оптимальная стратегия.

УДК: 517.977



© МИАН, 2024