RUS  ENG
Полная версия
ЖУРНАЛЫ // Известия высших учебных заведений. Поволжский регион. Физико-математические науки // Архив

Известия высших учебных заведений. Поволжский регион. Физико-математические науки, 2011, выпуск 4, страницы 44–58 (Mi ivpnz597)

Математика

Применение обобщенной формулы Родрига в комбинаторном анализе

Л. Н. Бондаренкоa, М. Л. Шараповаb

a Пензенский государственный университет, Пенза
b Московский государственный университет им. М. В. Ломоносова, Москва

Аннотация: Рассматривается обобщенная формула Родрига, позволяющая определить некоторые важные семейства многочленов, используемые в комбинаторном анализе. Эта формула применяется для получения рекуррентных соотношений и производящих функций. В частности, с этих позиций исследуются обобщенные многочлены Эйлера и рассматриваются их свойства. Для комбинаторной интерпретации коэффициентов этих многочленов привлекаются обобщенные перестановки Гесселя - Стенли и корневые помеченные r-угольные кактусы. Также рассматриваются конечно-разностные и q-аналоги обобщенной формулы Родрига, с помощью которых, в частности, изучаются q-аналоги экспоненциальных многочленов и многочленов Эйлера, а также их свойства.

Ключевые слова: формула Родрига, рекуррентная формула, производящая функция, непрерывные дроби, многочлены Эйлера, тождество Ворпицкого, перестановки Гесселя - Стенли, корневые помеченные r-угольные кактусы, q-экспоненциальные многочлены, q-многочлены Эйлера.

УДК: 519.1



© МИАН, 2024