Известия высших учебных заведений. Поволжский регион. Физико-математические науки,
2020, выпуск 4,страницы 186–200(Mi ivpnz66)
Физика
Влияние гранулометрического состава наполнителя и термообработки на адгезионную прочность многослойного металлического покрытия на поверхности металломатричного композиционного материала AlSiC
Аннотация:Актуальность и цели. Современные силовые полупроводниковые приборы содержат в своей конструкции термокомпенсаторы, изготавливаемые из металломатричного композиционного материала на основе алюминиевого матричного сплава и микропорошка карбида кремния (ММК AlSiC). На поверхность термокомпенсатора наносится многослойное металлическое покрытие, которое обеспечивает возможность прочного соединения термокомпенсатора с активным полупроводниковым кристаллом. Надежность силового полупроводникового прибора в значительной степени определяется адгезионной прочностью данного покрытия с поверхностью композита. Целью работы является исследование влияния гранулометрического состава наполнителя и термообработки на адгезионную прочность многослойного (Al-Ti-Ni-Ag) металлического покрытия, наносимого на поверхность ММК AlSiC методом магнетронного распыления.
Материалы и методы. Исследуемые образцы ММК AlSiC на основе алюминиевого матричного сплава АК9 изготавливались методом вакуумно-компрессионной пропитки. В качестве наполнителя использовались микропорошки карбида кремния гранулометрического состава F120, F150, F180 и смеси F120+М10П (10 %), F150+М10П (10 %), F180+М10П (10 %). Четырехслойное металлическое покрытие (Al-Ti-Ni-Ag) наносилось на поверхность исследуемых образцов ММК AlSiC методом магнетронного распыления. Адгезионная прочность соединения покрытия с поверхностью композита определялась методом отслаивания (L-методом).
Результаты. Измерена адгезионная прочность многослойного металлического покрытия на поверхности образцов ММК AlSiC с различным гранулометрическим составом наполнителя SiC в зависимости от продолжительности и температуры отжига в атмосфере водорода и аргона.
Выводы. Отжиг исследуемых образцов в атмосфере водорода или аргона продолжительностью более 30 мин при температуре 450$^{\circ}$С (или более 60 мин при температуре 350$^{\circ}$С) приводит к значительному (почти к троекратному) возрастанию адгезионной прочности металлического покрытия.