Аннотация:Актуальность и цели. Цель работы - теоретическое обоснование и программная реализация двухшагового метода решения обратной трехмерной скалярной задачи дифракции на неоднородном препятствии, характеризующемся кусочно-непрерывным показателем преломления. Материалы и методы. Краевая задача сводится к системе интегральных уравнений, для исследования этой задачи применяются элементы теории потенциала и преобразования Фурье. Результаты. Предложена интегральная формулировка обратной задачи дифракции, установлена единственность решения интегрального уравнения Фредгольма первого рода в специальных классах функций; разработан двухшаговый метод решения обратной задачи дифракции; предложены и программно реализованы процедуры уточнения приближенных решений задачи с зашумленными данными. Выводы. Предложенная двухшаговая процедура является эффективным методом решения трехмерных задач ближнепольной томографии.
Ключевые слова:трехмерная обратная задача дифракции, восстановление показателя преломления, интегральные уравнения, единственность решения, двухшаговый метод.