RUS  ENG
Полная версия
ЖУРНАЛЫ // Journal of Approximation Theory // Архив

J. Approx. Theory, 2013, том 175, страницы 77–82 (Mi jath4)

On the concentration of measure and the $L^1$-norm

Yu. V. Malykhina, K. S. Ryutinb

a Steklov Mathematical Institute, Gubkina str. 8, 119991, Moscow, Russia
b MSU, Faculty of Mechanics and Mathematics, GSP-1, 1 Leninskiye Gory, Main Building, 119991, Moscow, Russia

Аннотация: We seek a function in an $N$-dimensional subspace of $L^1$ that attains a half (more generally, a given part) of its $L^1$-norm on a set of least possible measure. We prove that such a measure is asymptotically maximal when the space is spanned by independent standard normal variables. This answers a question of Y. Benyamini, A. Kroó, A. Pinkus.

Поступила в редакцию: 27.02.2013
Принята в печать: 21.07.2013

Язык публикации: английский

DOI: 10.1016/j.jat.2013.07.011



Реферативные базы данных:


© МИАН, 2025