RUS  ENG
Полная версия
ЖУРНАЛЫ // Journal of Complexity // Архив

J. Complexity, 2023, том 76, страницы 101726–16 (Mi jcomp10)

Эта публикация цитируется в 1 статье

On the cardinality of lower sets and universal discretization

F. Daia, A. Prymakb, A. Yu. Shadrinc, V. N. Temlyakovdefg, S. Yu. Tikhonovhij

a Department of Mathematical and Statistical Sciences, University of Alberta Edmonton, Alberta T6G 2G1, Canada
b Department of Mathematics, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
c Department of Mathematics and Theoretical Physics, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, UK
d d University of South Carolina, 1523 Greene St., Columbia SC, 29208, USA
e Steklov Institute of Mathematics, Russian Federation
f Moscow Center for Fundamental and Applied Mathematics, Russian Federation
g Lomonosov Moscow State University, Russian Federation
h ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain
i Universitat Autònoma de Barcelona, Spain
j Centre de Recerca Matemàtica, Campus de Bellaterra, Edifici C, 08193 Bellaterra (Barcelona), Spain

Аннотация: A set $Q$ in $\mathbb{Z}^d_+$ is a lower set if $(k_1,\dots,k_d) \in Q$ implies $(l_1,\dots,l_d) \in Q $ whenever $0\le l_i \le k_i$ for all $i$. We derive new and refine known results regarding the cardinality of the lower sets of size $n$ in $\mathbb{Z}^d_+$. Next we apply these results for universal discretization of the $L_2$-norm of elements from $n$-dimensional subspaces of trigonometric polynomials generated by lower sets.

Ключевые слова: Lower sets; Downward closed sets; Integer partitions; Universal discretization; Multivariate trigonometric polynomials.

MSC: Primary 65J05; Secondary 05A17; 42B05; 65D30; 41A17; 41A63

Поступила в редакцию: 03.08.2022
Исправленный вариант: 19.12.2022
Принята в печать: 22.12.2022

Язык публикации: английский

DOI: 10.1016/j.jco.2022.101726



Реферативные базы данных:


© МИАН, 2024