J. Complexity, 2023, том 76, страницы 101726–16
(Mi jcomp10)
Эта публикация цитируется в
1 статье
On the cardinality of lower sets and universal discretization
F. Dai a ,
A. Prymak b ,
A. Yu. Shadrin c ,
V. N. Temlyakov defg ,
S. Yu. Tikhonov hij a Department of Mathematical and Statistical Sciences, University of Alberta Edmonton, Alberta T6G 2G1,
Canada
b Department of Mathematics, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
c Department of Mathematics and Theoretical Physics, University of Cambridge, Wilberforce Road, Cambridge
CB3 0WA, UK
d d University of South Carolina, 1523 Greene St., Columbia SC, 29208, USA
e Steklov Institute of Mathematics, Russian Federation
f Moscow Center for Fundamental and Applied Mathematics, Russian Federation
g Lomonosov Moscow State University, Russian Federation
h ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain
i Universitat Autònoma de Barcelona, Spain
j Centre de Recerca Matemàtica, Campus de Bellaterra, Edifici C, 08193 Bellaterra (Barcelona), Spain
Аннотация:
A set
$Q$ in
$\mathbb{Z}^d_+$
is a lower set if
$(k_1,\dots,k_d) \in Q$
implies
$(l_1,\dots,l_d) \in Q $
whenever
$0\le l_i \le k_i$
for all
$i$ . We derive new and refine known results regarding the cardinality of the lower sets of size
$n$ in
$\mathbb{Z}^d_+$ .
Next we apply these results for universal discretization of the
$L_2$ -norm of elements from
$n$ -dimensional subspaces of trigonometric polynomials generated by lower sets.
Ключевые слова:
Lower sets; Downward closed sets; Integer partitions; Universal discretization; Multivariate trigonometric polynomials.
MSC: Primary
65J05 ; Secondary
05A17 ;
42B05 ;
65D30 ;
41A17 ;
41A63 Поступила в редакцию: 03.08.2022
Исправленный вариант: 19.12.2022
Принята в печать: 22.12.2022
Язык публикации: английский
DOI:
10.1016/j.jco.2022.101726
Реферативные базы данных:
© , 2024