RUS  ENG
Полная версия
ЖУРНАЛЫ // Письма в Журнал экспериментальной и теоретической физики // Архив

Письма в ЖЭТФ, 2006, том 83, выпуск 12, страницы 635–639 (Mi jetpl1328)

Эта публикация цитируется в 18 статьях

ПЛАЗМА, ГАЗЫ

Differential model for 2D turbulence

V. S. L'vovab, S. A. Nazarenkoc

a Department of Chemical Physics, The Weizmann Institute of Science, Rehovot 76100, Israel
b Low Temperature Laboratory, Helsinki University of Technology, P.O. Box 2200, FIN-02015 HUT, Finland
c Mathematics Institute, The University of Warwick, Coventry, CV4-7AL, UK

Аннотация: We present a phenomenological model for 2D turbulence in which the energy spectrum obeys a nonlinear fourth-order differential equation. This equation respects the scaling properties of the original Navier-Stokes equations and it has both the $-5/3$ inverse-cascade and the $-3$ direct-cascade spectra. In addition, our model has Raleigh-Jeans thermodynamic distributions, as exact steady state solutions. We use the model to derive a relation between the direct-cascade and the inverse-cascade Kolmogorov constants which is in a good qualitative agreement with the laboratory and numerical experiments. We discuss a steady state solution where both the enstrophy and the energy cascades are present simultaneously and we discuss it in context of the Nastrom-Gage spectrum observed in atmospheric turbulence. We also consider the effect of the bottom friction onto the cascade solutions, and show that it leads to an additional decrease and finite-wavenumber cutoffs of the respective cascade spectra which agrees with existing experimental and numerical results.

PACS: 47.27.-i

Поступила в редакцию: 02.05.2006
Исправленный вариант: 16.05.2006

Язык публикации: английский


 Англоязычная версия: Journal of Experimental and Theoretical Physics Letters, 2006, 83:12, 541–545

Реферативные базы данных:


© МИАН, 2024