Аннотация:
We consider spin ice magnets (primarily, Dy$_2$Ti$_2$O$_7$) in the vicinity of their critical point on the $(H,T)$ plane. We find that the longitudinal susceptibility diverges at the critical point, leading to the behaviour qualitatively similar to the one which would result from non-zero conductance of magnetic charges. We show that dynamics of critical fluctuations belongs to the universality class of easy-axis ferroelectric and calculate logarithmic corrections (within two-loop approximation) to the mean-field critical behavior.