RUS  ENG
Полная версия
ЖУРНАЛЫ // Письма в Журнал экспериментальной и теоретической физики // Архив

Письма в ЖЭТФ, 2011, том 93, выпуск 9, страницы 603–607 (Mi jetpl1899)

Эта публикация цитируется в 13 статьях

МЕТОДЫ ТЕОРЕТИЧЕСКОЙ ФИЗИКИ

Hints on integrability in the Wilsonian/holographic renormalization group

E. T. Akhmedova, I. B. Gahramanovb, E. T. Musaeva

a Institute for Theoretical and Experimental Physics (Russian Federation State Scientific Center), Moscow
b National University of Science and Technology «MISIS»

Аннотация: The Polchinski equations for the Wilsonian renormalization group in the $D$–dimensional matrix scalar field theory can be written at large $N$ in a Hamiltonian form. The Hamiltonian defines evolution along one extra holographic dimension (energy scale) and can be found exactly for the subsector of $\operatorname{Tr}\phi^n$ (for all $n$) operators. We show that at low energies independently of the dimensionality $D$ the Hamiltonian system in question reduces to the integrable effective theory. The obtained Hamiltonian system describes large wavelength KdV type (Burger–Hopf) equation with an external potential and is related to the effective theory obtained by Das and Jevicki for the matrix quantum mechanics.

Поступила в редакцию: 09.03.2011

Язык публикации: английский


 Англоязычная версия: Journal of Experimental and Theoretical Physics Letters, 2011, 93:9, 545–550

Реферативные базы данных:


© МИАН, 2024