Аннотация:
Методом функционального интегрирования исследована динамика частицы в двухъямном потенциале, взаимодействующей со случайным классическим полем. Детально изучено поведение вероятностей локализации частицы в той или иной яме. Вычислены определенные корреляторы для квантовомеханических вероятностей, усредненные по внешнему случайному полю, а также функция распределения для вероятностей конечных состояний (которые можно рассматривать как случайные величины из-за наличия случайного поля). Пользуясь вычисленными корреляторами, мы обсуждаем зависимость конечного состояния от начального. Один из главных результатов работы состоит в том, что хотя недиагональные элементы матрицы плотности исчезают со временем, полной локализации частицы (редукции волнового пакета) в системе не происходит, и на бесконечно больших временах функция распределения для вероятности найти частицу в одной из ям оказывается константой.