RUS  ENG
Полная версия
ЖУРНАЛЫ // Письма в Журнал экспериментальной и теоретической физики // Архив

Письма в ЖЭТФ, 2002, том 75, выпуск 3, страницы 191–146 (Mi jetpl3157)

КОНДЕНСИРОВАННЫЕ СРЕДЫ

Two-dimensional site-bond percolation as an example of self-averaging system

O. A. Vasil'ev

L. D. Landau Institute for Theoretical Physics, Russian Academy of Sciences

Аннотация: The Harris-Aharony for statical model criteria predicts, that if specific heat exponent $\alpha \ge 0$, then this model does not exhibit self-averaging. In two-dimensional percolation model the index $\alpha=-\frac{1}{2}$. It means, that in accordance with Harris-Aharony criteria, this model can exhibit self-averaging properties. We study numerically the relative variance $R_{M}$ and $R_{\chi}$ of the probability of site to belong the «infinite» (maximum) cluster $M$ and the mean finite cluster sizes $\chi$. It was shown, that two-dimensional site-bound percolation on the square lattice, where the bonds play role of impurity and sites play role of statistical ensemble, over which the averaging performed, exhibit self-averaging properties.

PACS: 64.60.Cn, 75.10.Hk

Поступила в редакцию: 27.12.2001

Язык публикации: английский


 Англоязычная версия: Journal of Experimental and Theoretical Physics Letters, 2002, 75:3, 162–166

Реферативные базы данных:


© МИАН, 2024