RUS  ENG
Полная версия
ЖУРНАЛЫ // Письма в Журнал экспериментальной и теоретической физики // Архив

Письма в ЖЭТФ, 2013, том 98, выпуск 11, страницы 767–771 (Mi jetpl3589)

Эта публикация цитируется в 28 статьях

ПЛАЗМА, ГИДРО- И ГАЗОДИНАМИКА

The complex singularity of a Stokes wave

S. A. Dyachenkoa, P. M. Lushnikovab, A. O. Korotkevichab

a Department of Mathematics and Statistics, University of New Mexico
b L. D. Landau Institute for Theoretical Physics, Russian Academy of Sciences

Аннотация: Two-dimensional potential flow of the ideal incompressible fluid with free surface and infinite depth can be described by a conformal map of the fluid domain into the complex lower half-plane. Stokes wave is the fully nonlinear gravity wave propagating with the constant velocity. The increase of the scaled wave height $H/\lambda$ from the linear limit $H/\lambda=0$ to the critical value $H_{\max}/\lambda$ marks the transition from the limit of almost linear wave to a strongly nonlinear limiting Stokes wave. Here $H$ is the wave height and $\lambda$ is the wavelength. We simulated fully nonlinear Euler equations, reformulated in terms of conformal variables, to find Stokes waves for different wave heights. Analyzing spectra of these solutions we found in conformal variables, at each Stokes wave height, the distance $v_c$ from the lowest singularity in the upper half-plane to the real line which corresponds to the fluid free surface. We also identified that this singularity is the square-root branch point. The limiting Stokes wave emerges as the singularity reaches the fluid surface. From the analysis of data for $v_c\to 0$ we suggest a new power law scaling $v_c\propto (H_{\max}-H)^{3/2}$ as well as new estimate $H_{\max}/\lambda \simeq 0.1410633$.

Поступила в редакцию: 07.11.2013

Язык публикации: английский

DOI: 10.7868/S0370274X13230070


 Англоязычная версия: Journal of Experimental and Theoretical Physics Letters, 2013, 98:11, 675–679

Реферативные базы данных:


© МИАН, 2024