RUS  ENG
Полная версия
ЖУРНАЛЫ // Письма в Журнал экспериментальной и теоретической физики // Архив

Письма в ЖЭТФ, 2013, том 98, выпуск 11, страницы 826–829 (Mi jetpl3599)

Эта публикация цитируется в 11 статьях

МЕТОДЫ ТЕОРЕТИЧЕСКОЙ ФИЗИКИ

Extreme waves statistics for Ablowitz-Ladik system

D. S. Agafontsevab

a P. P. Shirshov Institute of Oceanology, Russian Academy of Sciences
b Novosibirsk State University

Аннотация: We examine statistics of waves for the problem of modulation instability development in the framework of discrete integrable Ablowitz–Ladik (AL) system. Modulation instability depends on one free parameter $h$ that has the meaning of the coupling between the nodes on the lattice. For strong coupling $h\ll 1$ the probability density functions (PDFs) for waves amplitudes coincide with that for the continuous classical Nonlinear Schrodinger (NLS) equation; the PDFs for both systems are very close to Rayleigh ones. When the coupling is weak $h\sim 1$, there appear highly localized waves with very large amplitudes, that drastically change the PDFs to significantly non-Rayleigh ones, with so-called “fat tails” when the probability of a large wave occurrence is by several orders of magnitude higher than that predicted by the linear theory. Evolution of amplitudes for such rogue waves with time is similar to that of the Peregrine solution for the classical NLS equation.

Поступила в редакцию: 17.10.2013

Язык публикации: английский

DOI: 10.7868/S0370274X13230173


 Англоязычная версия: Journal of Experimental and Theoretical Physics Letters, 2013, 98:11, 731–734

Реферативные базы данных:


© МИАН, 2024