RUS  ENG
Полная версия
ЖУРНАЛЫ // Письма в Журнал экспериментальной и теоретической физики // Архив

Письма в ЖЭТФ, 2015, том 101, выпуск 12, страницы 931–934 (Mi jetpl4663)

Эта публикация цитируется в 30 статьях

МЕТОДЫ ТЕОРЕТИЧЕСКОЙ ФИЗИКИ

On the defect and stability of differential expansion

Ya. Kononova, A. Morozovbcd

a Higher School of Economics, Math Department, 117312 Moscow, Russia
b Institute for Information Transmission Problems, 127994 Moscow, Russia
c National Research Nuclear University "MEPhI", 15409 Moscow 1, Russia
d Institute for Theoretical and Experimental Physics, 117218 Moscow, Russia

Аннотация: Empirical analysis of many colored knot polynomials, made possible by recent computational advances in Chern–Simons theory, reveals their stability: for any given negative $N$ and any given knot the set of coefficients of the polynomial in $r$-th symmetric representation does not change with $r$, if it is large enough. This fact reflects the non-trivial and previously unknown properties of the differential expansion, and it turns out that from this point of view there are universality classes of knots, characterized by a single integer, which we call defect, and which is in fact related to the power of Alexander polynomial.

Поступила в редакцию: 30.04.2015

Язык публикации: английский

DOI: 10.7868/S0370274X15120115


 Англоязычная версия: Journal of Experimental and Theoretical Physics Letters, 2015, 101:12, 831–834

Реферативные базы данных:


© МИАН, 2024