RUS  ENG
Полная версия
ЖУРНАЛЫ // Письма в Журнал экспериментальной и теоретической физики // Архив

Письма в ЖЭТФ, 2015, том 102, выпуск 2, страницы 82–88 (Mi jetpl4680)

Эта публикация цитируется в 3 статьях

АСТРОФИЗИКА И КОСМОЛОГИЯ

Emergent physics on Mach's principle and the rotating vacuum

G. Jannesa, G. E. Volovikbc

a Modelling & Numerical Simulation Group, Universidad Carlos III de Madrid, 28911 Leganés, Spain
b Landau Institute for Theoretical Physics of the RAS, 119334 Moscow, Russia
c Low Temperature Laboratory, Aalto University, P.O. Box 15100, FI-00076 Aalto, Finland

Аннотация: Mach's principle applied to rotation can be correct if one takes into account the rotation of the quantum vacuum together with the Universe. Whether one can detect the rotation of the vacuum or not depends on its properties. If the vacuum is fully relativistic at all scales, Mach's principle should work and one cannot distinguish the rotation: in the rotating Universe+vacuum, the co-rotating bucket will have a flat surface (not concave). However, if there are “quantum gravity” effects which violate Lorentz invariance at high energy, then the rotation will become observable. This is demonstrated by analogy in condensed-matter systems, which consist of two subsystems: superfluid background (analog of vacuum) and “relativistic” excitations (analog of matter). For the low-energy (long-wavelength) observer the rotation of the vacuum is not observable. In the rotating frame, the “relativistic” quasiparticles feel the background as a Minkowski vacuum, i.e. they do not feel the rotation. Mach's idea of the relativity of rotational motion does indeed work for them. But rotation becomes observable by high-energy observers, who can see the quantum gravity effects.

Поступила в редакцию: 05.06.2015

Язык публикации: английский

DOI: 10.7868/S0370274X15140027


 Англоязычная версия: Journal of Experimental and Theoretical Physics Letters, 2015, 102:2, 73–79

Реферативные базы данных:


© МИАН, 2024