RUS  ENG
Полная версия
ЖУРНАЛЫ // Письма в Журнал экспериментальной и теоретической физики // Архив

Письма в ЖЭТФ, 2009, том 90, выпуск 11, страницы 793–799 (Mi jetpl596)

Эта публикация цитируется в 14 статьях

ГРАВИТАЦИЯ, АСТРОФИЗИКА

$\hbar$ as parameter of Minkowski metric in effective theory

G. E. Volovikab

a Low Temperature Laboratory, Helsinki University of Technology, FIN-02015 HUT, Finland
b Landau Institute for Theoretical Physics RAS

Аннотация: With the proper choice of the dimensionality of the metric components and matter field variables, the action for all fields becomes dimensionless. Such quantities as the vacuum speed of light $c$, the Planck constant $\hbar$, the electric charge $e$, the particle mass $m$, the Newton constant $G$ never enter equations written in the covariant form, i.e., via the metric $g^{\mu\nu}$. The speed of light $c$ and the Planck constant $\hbar$ are parameters of a particular two-parametric family of solutions of general relativity equations describing the flat isotropic Minkowski vacuum in effective theory emerging at low energy: $g^{\mu\nu}_\mathrm{Minkowski}=\mathrm{diag}(-\hbar^2,(\hbar c)^2,(\hbar c)^2,(\hbar c)^2)$. They parametrize the equilibrium quantum vacuum state. The physical quantities which enter the covariant equations are dimensionless quantities and quantities which have dimension of rest energy $M$ or its power. Dimensionless quantities include the running coupling ‘constants’ $\alpha_i$; the geometric $\theta$-parameters which enter topological terms in action; and geometric charges coming from the group theory, such as angular momentum quantum number $j$, weak charge, electric charge $q$, hypercharge, baryonic and leptonic charges, number of atoms $N$, etc. Dimensionful parameters are mass matrices with dimension of $M$; gravitational coupling $K$ with $[K]=[M]^2$; cosmological constant with dimension $M^4$; etc. In effective theory, the interval $s$ has the dimension of $1/M$; it characterizes dynamics of particles in quantum vacuum rather than space-time geometry. The action is dimensionless reflecting equivalence between action and the phase of a wave function in quantum mechanics. We discuss the effective action, and the measured physical quantities including parameters of metrology triangle.

PACS: 03.65.-w, 04.20.-q, 05.20.Jr

Поступила в редакцию: 02.11.2009
Исправленный вариант: 09.11.2009

Язык публикации: английский


 Англоязычная версия: Journal of Experimental and Theoretical Physics Letters, 2009, 90:11, 697–704

Реферативные базы данных:


© МИАН, 2024