RUS  ENG
Полная версия
ЖУРНАЛЫ // Письма в Журнал экспериментальной и теоретической физики // Архив

Письма в ЖЭТФ, 2020, том 112, выпуск 6, страницы 388–393 (Mi jetpl6261)

Эта публикация цитируется в 3 статьях

МЕТОДЫ ТЕОРЕТИЧЕСКОЙ ФИЗИКИ

Зеркальные пары орбифолдов квинтики

А. Белавинabc, Б. Ереминdcba

a Институт теоретической физики им. Л. Д. Ландау, 142432 Черноголовка, Россия
b Институт проблем передачи информации им. А. А. Харкевича, 127994 Москва, Россия
c Московский физико-технический институт, 141700 Долгопрудный, Россия
d Сколковский институт науки и технологий, 143026 Москва, Россия

Аннотация: В этой работе мы сравниваем две конструкции построения зеркальных пар многообразий Калаби–Яу на примере орбифолдов Квинтики $\mathcal{Q}$. Первая – конструкция Берглунда–Хубша–Кравитца (БХК) состоит в следующем. Мы рассматриваем фактор $X$ гиперповерхности $\mathcal{Q}$ по некоторой подгруппе $H'$ максимально допустимой группы $SL$. Тогда зеркальное многообразие $Y$ определяется как фактор по дополнительной подгруппе ${H'}^T$. Вторая – конструкция Батырева определяет по данным полинома $W_X$, задающего Калаби–Яу $X$, торическое многообразие $T$, содержащее зеркало $Y$ как гиперповерхность, задаваемую нулями полинома $W_Y$. Сам полином $W_Y$ мы находим в явном виде. По виду $W_Y$ мы находим его группу симметрии и проверяем, что она совпадает с предсказанной конструкцией БХК.

Поступила в редакцию: 03.09.2020
Исправленный вариант: 03.09.2020
Принята в печать: 03.09.2020

DOI: 10.31857/S1234567820180111


 Англоязычная версия: Journal of Experimental and Theoretical Physics Letters, 2020, 112:6, 370–375

Реферативные базы данных:


© МИАН, 2024