Аннотация:
В данной работе представлены уравнения для двух и трех скалярных полей, допускающие локализованые решения, которые проявляют эффект биений связанных осцилляторов. Периодически амплитуда колебаний локализованного возмущения для одного поля постепенно уменьшается до минимума, а остальных скалярных полей – увеличивается до максимума, затем процесс повторяется в обратном направлении. При этом, первоначально другие поля, кроме одного, находятся либо в состоянии фонового решения с малой амплитудой, либо равны нулю. Подобные решения могут быть интересны с точки зрения аналогии с осцилляциями нейтрино. Представлены так же уравнения движения, в которых при возмущении одной из компонент обязательно появляется возмущение второй и третьей даже при нулевом фоновом состоянии. Показано, что для этих уравнений выполняется закон сохранения энергии.
Поступила в редакцию: 22.03.2024 Исправленный вариант: 11.04.2024 Принята в печать: 13.04.2024