RUS  ENG
Полная версия
ЖУРНАЛЫ // Письма в Журнал экспериментальной и теоретической физики // Архив

Письма в ЖЭТФ, 2010, том 92, выпуск 2, страницы 95–100 (Mi jetpl773)

Эта публикация цитируется в 5 статьях

ПЛАЗМА, ГАЗЫ

Weak solution for the Hele-Shaw problem: viscous shocks and singularities

S.-Y. Leea, R. Teodorescub, P. Wiegmannc

a Mathematics 253-37, Caltech
b Mathematics Department, Univ. of South Florida
c The James Franck Institute, University of Chicago

Аннотация: In Hele-Shaw flows a boundary of a viscous fluid develops unstable fingering patterns. At vanishing surface tension, fingers evolve to cusp-like singularities preventing a smooth flow. We show that the Hele-Shaw problem admits a weak solution where a singularity triggers viscous shocks. Shocks form a growing, branching tree of a line distribution of vorticity where pressure has a finite discontinuity. A condition that the flow remains curl-free at a macroscale uniquely determines the shock graph structure. We present a self-similar solution describing shocks emerging from a generic (2,3)-cusp singularity – an elementary branching event of a branching shock graph.

Поступила в редакцию: 25.05.2010

Язык публикации: английский


 Англоязычная версия: Journal of Experimental and Theoretical Physics Letters, 2010, 92:2, 91–96

Реферативные базы данных:


© МИАН, 2024