RUS  ENG
Полная версия
ЖУРНАЛЫ // Журнал математической физики, анализа, геометрии // Архив

Матем. физ., анал., геом., 2004, том 11, номер 4, страницы 408–420 (Mi jmag217)

Эта публикация цитируется в 4 статьях

Absolutely continuous measures on the unit circle with sparse Verblunsky coefficients

Leonid Golinskii

Mathematical Division, B. Verkin Institute for Low Temperature Physics and Engineering, National Academy of Sciences of Ukraine, 47 Lenin Ave., Kharkov, 61103, Ukraine

Аннотация: Orthogonal polynomials and measures on the unit circle are fully determined by their Verblunsky coefficients through the Szegő recurrences. We study measures $\mu$ from the Szegő class whose Verblunsky coefficients vanish off a sequence of positive integers with exponentially growing gaps. All such measures turn out to be absolutely continuous on the circle. We also gather some information about the density function $\mu'$.

MSC: 42C05

Поступила в редакцию: 12.01.2004

Язык публикации: английский



Реферативные базы данных:


© МИАН, 2024