RUS  ENG
Полная версия
ЖУРНАЛЫ // Журнал математической физики, анализа, геометрии // Архив

Матем. физ., анал., геом., 2004, том 11, номер 4, страницы 434–448 (Mi jmag219)

Эта публикация цитируется в 16 статьях

A probabilistic approach to $q$-polynomial coefficients, Euler and Stirling numbers. I

A. Il'inskii

Department of Mechanics and Mathematics, V. N. Karazin Kharkov National University, 4 Svobody Sq., Kharkov, 61077, Ukraine

Аннотация: It is known that Bernoulli scheme of independent trials with two outcomes is connected with the binomial coefficients. The aim of this paper is to indicate stochastic processes which are connected with the $q$-polynomial coefficients (in particular, with the $q$-binomial coefficients, or the Gaussian polynomials), Stirling numbers of the first and the second kind, and Euler numbers in a natural way. A probabilistic approach allows us to give very simple proofs of some identities for these coefficients.

MSC: 05A30, 05A19, 11B65, 11B68, 11B73

Поступила в редакцию: 05.07.2004

Язык публикации: английский



Реферативные базы данных:


© МИАН, 2024