RUS  ENG
Полная версия
ЖУРНАЛЫ // Журнал математической физики, анализа, геометрии // Архив

Матем. физ., анал., геом., 2003, том 10, номер 3, страницы 307–325 (Mi jmag253)

Эта публикация цитируется в 13 статьях

The Riemann extensions in theory of differential equations and their applications

Valerii Dryuma

Institute of Mathematics and Informatics, AS RM, 5 Academiei Str., Kishinev, 2028, Moldova

Аннотация: Some properties of the $4$-dim Riemannian spaces with the metrics
$$ ds^2=2(za_3-ta_4)dx^2+4(za_2-ta_3)dxdy+2(za_1-ta_2)dy^2+2dxdz+2dydt $$
connected with the second order nonlinear differential equations
\begin{equation} y''+a_{1}(x,y){y'}^3+3a_{2}(x,y){y'}^2+3a_{3}(x,y)y'+a_{4}(x,y)=0 \tag{1} \end{equation}
with arbitrary coefficients $a_{i}(x,y)$ are studied. The properties of dual equations for the equations (1) are considered. The theory of the invariants of second order ODE's for investigation of the nonlinear dynamical systems with parameters is used. The property of the eight dimensional extensions of the four-dimensional Riemannian spaces of General Relativity are discussed.

MSC: 35Q58

Поступила в редакцию: 19.03.2003

Язык публикации: английский



© МИАН, 2024